3.2600 \(\int \frac{x^{-1+2 n}}{a+b x^n} \, dx\)

Optimal. Leaf size=28 \[ \frac{x^n}{b n}-\frac{a \log \left (a+b x^n\right )}{b^2 n} \]

[Out]

x^n/(b*n) - (a*Log[a + b*x^n])/(b^2*n)

________________________________________________________________________________________

Rubi [A]  time = 0.0172597, antiderivative size = 28, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {266, 43} \[ \frac{x^n}{b n}-\frac{a \log \left (a+b x^n\right )}{b^2 n} \]

Antiderivative was successfully verified.

[In]

Int[x^(-1 + 2*n)/(a + b*x^n),x]

[Out]

x^n/(b*n) - (a*Log[a + b*x^n])/(b^2*n)

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^{-1+2 n}}{a+b x^n} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x}{a+b x} \, dx,x,x^n\right )}{n}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{b}-\frac{a}{b (a+b x)}\right ) \, dx,x,x^n\right )}{n}\\ &=\frac{x^n}{b n}-\frac{a \log \left (a+b x^n\right )}{b^2 n}\\ \end{align*}

Mathematica [A]  time = 0.0125486, size = 26, normalized size = 0.93 \[ \frac{\frac{x^n}{b}-\frac{a \log \left (a+b x^n\right )}{b^2}}{n} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + 2*n)/(a + b*x^n),x]

[Out]

(x^n/b - (a*Log[a + b*x^n])/b^2)/n

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 33, normalized size = 1.2 \begin{align*}{\frac{{{\rm e}^{n\ln \left ( x \right ) }}}{bn}}-{\frac{a\ln \left ( a+b{{\rm e}^{n\ln \left ( x \right ) }} \right ) }{{b}^{2}n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(-1+2*n)/(a+b*x^n),x)

[Out]

1/b/n*exp(n*ln(x))-a/b^2/n*ln(a+b*exp(n*ln(x)))

________________________________________________________________________________________

Maxima [A]  time = 0.971104, size = 43, normalized size = 1.54 \begin{align*} \frac{x^{n}}{b n} - \frac{a \log \left (\frac{b x^{n} + a}{b}\right )}{b^{2} n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)/(a+b*x^n),x, algorithm="maxima")

[Out]

x^n/(b*n) - a*log((b*x^n + a)/b)/(b^2*n)

________________________________________________________________________________________

Fricas [A]  time = 1.07346, size = 49, normalized size = 1.75 \begin{align*} \frac{b x^{n} - a \log \left (b x^{n} + a\right )}{b^{2} n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)/(a+b*x^n),x, algorithm="fricas")

[Out]

(b*x^n - a*log(b*x^n + a))/(b^2*n)

________________________________________________________________________________________

Sympy [A]  time = 16.1807, size = 41, normalized size = 1.46 \begin{align*} \begin{cases} \frac{\log{\left (x \right )}}{a} & \text{for}\: b = 0 \wedge n = 0 \\\frac{x^{2 n}}{2 a n} & \text{for}\: b = 0 \\\frac{\log{\left (x \right )}}{a + b} & \text{for}\: n = 0 \\- \frac{a \log{\left (\frac{a}{b} + x^{n} \right )}}{b^{2} n} + \frac{x^{n}}{b n} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1+2*n)/(a+b*x**n),x)

[Out]

Piecewise((log(x)/a, Eq(b, 0) & Eq(n, 0)), (x**(2*n)/(2*a*n), Eq(b, 0)), (log(x)/(a + b), Eq(n, 0)), (-a*log(a
/b + x**n)/(b**2*n) + x**n/(b*n), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2 \, n - 1}}{b x^{n} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)/(a+b*x^n),x, algorithm="giac")

[Out]

integrate(x^(2*n - 1)/(b*x^n + a), x)